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File-System Implementation
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In-memory file-system structures. (a) File open. (b) File read.




Metadata

File-control block (FCB) = inode (in Linux)
Metadata vs. Actual Data
Metadata
- Ownership
- Permissions
- Location of the file contents
etc.
Actual data
File content



Directory Implementation

* Linear List How to store all entries @
e Hash Table (all files in the directory)

Allocation Method

——

* Contiguous Allocation
e Linked Allocation _ How to store each entry

. (each file)
* Indexed Allocation

Directory @
A directory can contain directories
@ (nested structure).

@

A partition
(volume) |  Files




Contiguous Allocation
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Figure 14.4 Contiguous allocation of disk space.



Linked Allocation
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\—/ 3. Reliability of linked list

Figure 14.5 Linked allocation of disk space.




File Allocation Table (FAT)

directory entry 0uuuu linked allocation ucicinin
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Figure 14.6 File-allocation table.




Jardauag FAT

IWU cluster size cnw disk size
IWDIK table Juunanavn d:TAlU
lUaov memory WD cluster tHed

K efficiency aa

2:1t3 FAT32 fiu partition AtHeY
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http://www.project9.com/fat32/



http://www.project9.com/fat32/

| OFFICE14 Activation Propertie [

Securty | Details | Previous Versions

OFFICE14 Activation

Type of file:  TXT File ()

Opens with: % Vi Improved - A Text Ed | Change...

Location: ZA07 - MyVirtualMachine 01 - 05 and software

Size: 154 bytes (154 bytes) < Internal Fragmentation

Size on disk:  1.00 KB (1,024 bytes) LWS1:09V allocate Na: 1 block

Created: Tuesday, August 20, 2013, 5:52:52 PM
Modified: Wednesday, August 21, 2013, 4:45:04 PM
Accessed: Friday, August 23, 2013, 10:18:35 AM

Attributes: Read-only Hidden Archive




Indexed Allocation
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Figure 14.7 Indexed allocation of disk space. ~ f?:H1 data block nasvnsia



How to deal with very large files

* Linked scheme
Slow access due to linked structure.
* Multilevel index
Fast access (jump to a desired byte quickly)
but waste 2 blocks for a small file.
* Combined scheme
The first 15 pointers are in inode.
12 pointer to direct blocks.
1 pointers to single indirect blocks.
1 pointers to double indirect blocks.
1 pointers to triple indirect blocks.



Ex. block a: 4k bytes pointer Juula 4 bytes
- 1 twWaylauinga

 atadata 12 x 4k = 49,152

(4k/4) * 4k = 4,194,304

(4k/4) * (4k/4) * 4k = 4,294,967,296

data (4k/4) * (4k/4) * (4k/4) * 4k = 4,398,046,511,104

SOU 4,402,345,721,856 bytes = 4 TB

data
single indirect ~+— |data
blocks - [_, data -, |data
double indirect 'E . .l [data
blocks . =— [data
triple indirect — [data s data
blocks
= = |data
+E~ —~=— |data
Nk (.. . [data
E —— _, |data
+E—* | .+ |data
=" +3+— |data
U data

Figure 14.8 The UNIX inode.



Free-Space Management
18 Q42 1
X = 215 32ms
* Bit vector aB 212 8 1pyte
1-TB disk with 4KB blocks requires 32 MB. ""°"°
* Linked List
Not efficient, require substantial I/0.
However, not often.
* Grouping (Qalaaanalu)
The first block contains n - 1 free blocks.
The last block contains another n - 1 free blocks
and so on.
 Counting (Qataanalu)
. Space Maps (tu ZFS)
llU\) space lUU metaslab ucia: metaslab U data structure
Gh) space map DJuulalanuasts 1/0 Uayni13S counting

ZFS Wu file system udvs:UUUUGNS Oracle Solaris, 1 zettabytes (ZB) = 10007 bytes
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Figure 14.9 Linked free-space list on disk.
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free-space list head
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Figure 14.9 Linked free-space list on disk.




List of File Systems

Contents [hide] Linux
1 Disk file systems ext3, ext4
1.1 File systems with built-in fault-tolerance Windows
1.2 File systems optimized for flash memory, solid state media FAT32, NTFS
1.3 Record-oriented file systems -
1.4 Shared-disk file systems macOS, 105
2 Distributed file systems HFS Plus or HFS+
2.1 Distributed fault-tolerant file systems Apple File System
2.2 Distributed parallel file systems (APFS) U 2017
2.3 Distributed parallel fault-tolerant file systems
2.4 Peer-to-peer file systems WuFuUa=0onoSBUlKLU
3 Special-purpose file systems anAsv IUwWasguuos 9

3.1 Pseudo- and virtual file systems

3.2 Encrypted file systems exFAT Aoo:1s?
3.3 File system interfaces

4 See also

5> References

6 External links

https://en.wikipedia.org/wiki/List_of_file_systems



Journaling File System

A journaling file system is a file system that keeps track of changes
not yet committed to the file system's main part by recording the
intentions of such changes in a data structure known as a "journal”,
which is usually a circular log. In the event of a system crash or power
failure, such file systems can be brought back online more quickly with
a lower likelihood of becoming corrupted.[l][z]

For example, deleting a file on a Unix file system involves three steps:

1. Removing its directory entry.
2. Releasing the inode to the pool of free inodes.

3. Returning all disk blocks to the pool of free disk blocks.

If a crash occurs after step 1 and before step 2, there will be an orphaned
inode and hence a storage leak; if a crash occurs between steps 2 and 3,
then the blocks previously used by the file cannot be used for new files,
effectively decreasing the storage capacity of the file system.

https://en.wikipedia.org/wiki/Journaling_file_system
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