wilamiaagailadun 13 waaaniaw 2567

File-System Implementation

TIHaa directory structure Su mem

open (file name)

LAdAUK File-control block (FC

3)

AURN

directory structure

directory structure

=
-

file-control block

File-control block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

ACL = access-control list

IHaa FCB WAuD

file-control block yy kernel memory

user space kernel memory secondary storage
(@) Open
index
]
T data blocks
read (index) T
per-process system-wide
open-file table open-file table

user space

Figure 14.3

kernel memory

(b) Read

secondary storage

In-memory file-system structures. (a) File open. (b) File read.

Metadata

File-control block (FCB) = inode (in Linux)
Metadata vs. Actual Data
Metadata
- Ownership
- Permissions
- Location of the file contents
etc.
Actual data
File content

Directory Implementation

* Linear List How to store all entries @
e Hash Table (all files in the directory)

Allocation Method

——

* Contiguous Allocation
e Linked Allocation _ How to store each entry

. (each file)
* Indexed Allocation

Directory @
A directory can contain directories
@ (nested structure).

@

A partition
(volume) | Files

Contiguous Allocation

m directory
_//
count file start length
o] 11 2[] 3[] count O P
i tr 14 3
4D 5|:| BD TD mail 19 6
list 28 4
gl | 9D10Dt1r1D f . 5
120 113[_]14[_J15[]
16117 J18[1190]
| Maijor dr ¢
20D21Dm§]2D23D ajor drawbacks .
1. External fragmentation.
24DESD|26D2TD 2. File size must be declared.
ist
28l 29[130[131[]
\J/

Figure 14.4 Contiguous allocation of disk space.

Linked Allocation

directory

file start end
jeep 9 25

20 _J21[Jp2[J23]]
_ pointer Wgv block aalU
o4 |25 |26[J27[] pointer oc

e

Major drawbacks e

1. Good only sec[Lfential access.
28 29[J30[J31[] %
2. 4 bytes oGt of 512-byte block = 0.78%

\—/ 3. Reliability of linked list

Figure 14.5 Linked allocation of disk space.

File Allocation Table (FAT)

directory entry 0uuuu linked allocation ucicinin
wuu linked list tualadnouKuNl

test et 217 mswilkaadu mem 1@ MTATUGY
name start block chusuvAdoNISUUTWATAISON3 WU
0 linked list AdDvoudaniuna: block
A table per volume
(not in the textbook)
> 217 618 Block
ocC
(cluster) Next
) 339 EOF |«
Major drawbacks
1. Internal fragmentation 217 618
618 339 [e— |
339 -1
number of disk blocks -1
FAT
618 339
Figure 14.6 File-allocation table.

Jardauag FAT

IWU cluster size cnw disk size
IWDIK table Juunanavn d:TAlU
lUaov memory WD cluster tHed

K efficiency aa

2:1t3 FAT32 fiu partition AtHeY
N a Govuuvtdusale A
partition UdQUUlE NTFS HuQuad
FAT32 lKU1:=AU flash drive N
yulatan

e e | cuer st cceney

http://www.project9.com/fat32/

http://www.project9.com/fat32/

| OFFICE14 Activation Propertie [

Securty | Details | Previous Versions

OFFICE14 Activation

Type of file: TXT File ()

Opens with: % Vi Improved - A Text Ed | Change...

Location: ZA07 - MyVirtualMachine 01 - 05 and software

Size: 154 bytes (154 bytes) < Internal Fragmentation

Size on disk: 1.00 KB (1,024 bytes) LWS1:09V allocate Na: 1 block

Created: Tuesday, August 20, 2013, 5:52:52 PM
Modified: Wednesday, August 21, 2013, 4:45:04 PM
Accessed: Friday, August 23, 2013, 10:18:35 AM

Attributes: Read-only Hidden Archive

Indexed Allocation

TN directory
Ce— file index block

ol | 1 D\ o[| 3] jeep v a1 index block TwohusnuoonlU
4[] 5[] 70] e e L

g1 ol J1o[110
12113 114

16
20l 21l _l22[A23[]

wWUU multi-indexed

-

(N

24] |25 lo6[J27[| idx | |idx
28| 29[J30l 131[] ’[¢ }étiﬁ‘ \

v/ wuuU multi-indexed anm

IWS1:AUULAtU 2 block

Figure 14.7 Indexed allocation of disk space. ~ f?:H1 data block nasvnsia

How to deal with very large files

* Linked scheme
Slow access due to linked structure.
* Multilevel index
Fast access (jump to a desired byte quickly)
but waste 2 blocks for a small file.
* Combined scheme
The first 15 pointers are in inode.
12 pointer to direct blocks.
1 pointers to single indirect blocks.
1 pointers to double indirect blocks.
1 pointers to triple indirect blocks.

Ex. block a: 4k bytes pointer Juula 4 bytes
- 1 twWaylauinga

 atadata 12 x 4k = 49,152

(4k/4) * 4k = 4,194,304

(4k/4) * (4k/4) * 4k = 4,294,967,296

data (4k/4) * (4k/4) * (4k/4) * 4k = 4,398,046,511,104

SOU 4,402,345,721,856 bytes = 4 TB

data
single indirect ~+— |data
blocks - [_, data -, |data
double indirect 'E . .l [data
blocks . =— [data
triple indirect — [data s data
blocks
= = |data
+E~ —~=— |data
Nk (.. . [data
E —— _, |data
+E—* | .+ |data
=" +3+— |data
U data

Figure 14.8 The UNIX inode.

Free-Space Management
18 Q42 1
X = 215 32ms
* Bit vector aB 212 8 1pyte
1-TB disk with 4KB blocks requires 32 MB. ""°"°
* Linked List
Not efficient, require substantial I/0.
However, not often.
* Grouping (Qalaaanalu)
The first block contains n - 1 free blocks.
The last block contains another n - 1 free blocks
and so on.
 Counting (Qataanalu)
. Space Maps (tu ZFS)
llU\) space lUU metaslab ucia: metaslab U data structure
Gh) space map DJuulalanuasts 1/0 Uayni13S counting

ZFS Wu file system udvs:UUUUGNS Oracle Solaris, 1 zettabytes (ZB) = 10007 bytes

free-space list head

89107?_‘

12@-&15@

1617118 19 |
20 121[122/ 123[]

24[Jos[26| |27

28[J29[130[]31[]

~_

Figure 14.9 Linked free-space list on disk.

Grouping

JoQAooULA block LaeATlA free
block UNtGo1uduLin (1 block AU
pointer TOKA9AD WU 4k / 4 = 1,024

block 2
34589
/

/

block 9

10,11,12,13,1/7
Z

i

block 17
18,25,26,27 -1

free-space list head

o] 100 211 3 Counting

contiguous blocks

block | count
2 4
12@D15D 8 6
16 J17[J18[J19[] 17 2
20[J21[J22/]23[] 2> 3

N3 19ENS:90NS:NY
Ms1UA:IHdUIN

24[Jos[26| |27

28[J29[130[]31[]
~_

Figure 14.9 Linked free-space list on disk.

List of File Systems

Contents [hide] Linux
1 Disk file systems ext3, ext4
1.1 File systems with built-in fault-tolerance Windows
1.2 File systems optimized for flash memory, solid state media FAT32, NTFS
1.3 Record-oriented file systems -
1.4 Shared-disk file systems macOS, 105
2 Distributed file systems HFS Plus or HFS+
2.1 Distributed fault-tolerant file systems Apple File System
2.2 Distributed parallel file systems (APFS) U 2017
2.3 Distributed parallel fault-tolerant file systems
2.4 Peer-to-peer file systems WuFuUa=0onoSBUlKLU
3 Special-purpose file systems anAsv IUwWasguuos 9

3.1 Pseudo- and virtual file systems

3.2 Encrypted file systems exFAT Aoo:1s?
3.3 File system interfaces

4 See also

5> References

6 External links

https://en.wikipedia.org/wiki/List_of_file_systems

Journaling File System

A journaling file system is a file system that keeps track of changes
not yet committed to the file system's main part by recording the
intentions of such changes in a data structure known as a "journal”,
which is usually a circular log. In the event of a system crash or power
failure, such file systems can be brought back online more quickly with
a lower likelihood of becoming corrupted.[l][z]

For example, deleting a file on a Unix file system involves three steps:

1. Removing its directory entry.
2. Releasing the inode to the pool of free inodes.

3. Returning all disk blocks to the pool of free disk blocks.

If a crash occurs after step 1 and before step 2, there will be an orphaned
inode and hence a storage leak; if a crash occurs between steps 2 and 3,
then the blocks previously used by the file cannot be used for new files,
effectively decreasing the storage capacity of the file system.

https://en.wikipedia.org/wiki/Journaling_file_system

Chapter 14 File-System Implementation

14.1 File-System Structure 564

14.2 File-System Operations 566
14.3 Directory Implementation 568
14.4 Allocation Methods 570

14.5 Free-Space Management 578
14.6 Efficiency and Performance 582

14.7 Recovery 586

14.8 Example: The WAFL File System
149 Summary 593

Practice Exercises 594

Further Reading 594

Chapter 15 File-System Internals

15.1 File Systems 597

15.2 File-System Mounting 598
15.3 Partitions and Mounting 601
15.4 File Sharing 602

15.5 Virtual File Systems 603
15.6 Remote File Systems 605

15.7 Consistency Semantics 608
15.8 NEFS 610

15.9 Summary 615
Practice Exercises 616
Further Reading 617

589

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

