whlapfsagaiaduin 23 gatan 2567

Virtual Memory

Why?

The need of memory more than the available physical memory.

Process 1

Process 2

Process 3

Process 4

Physical
Memory

Physical Memory Limits: Windows 8

The following table specifies the limits on physical memory for Windows 8.

Version Limit on X86 Limit on X64
Windows 8 Enterprise 4GB 512 GB
Windows 8 Professional 4 GB 512 GB
Windows 8 4 GB 128 GB

Physical Memory Limits: Windows 7

The following table specifies the limits on physical memory for Windows 7.

Version Limit on X86 Limit on X64
Windows 7 Ultimate 4GB 192 GB
Windows 7 Enterprise 4 GB 192 GB
Windows 7 Professional 4GB 192 GB
Windows 7 Home Premium 4GB 16 GB
Windows 7 Home Basic 4GB 8 GB
Windows 7 Starter 2 GB N/A

Memory Limits for Windows Releases
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366778(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366778(v=vs.85).aspx

Physical Memory Limits: Windows 11

The following table specifies the limits on physical memory for Windows 11.

Version Limit on X64 Limit on ARM6&4
Windows 171 Enterprise 6TB b TE

Windows 11 Education 2TB 2TE

Windows 11 Pro for Workstations 6TB 6TE

Windows 11 Pro 2TB 2TE

Windows 11 Home 128 GB 128 GB

Physical Memory Limits: Windows 10

The following table specifies the limits on physical memory for Windows 10.

Version Limit on X86 Limit on X64
Windows 10 Enterprise 4GB & TB
Windows 10 Education 4 GB 2TB
Windows 10 Pro for Workstations 4 GB 6TB
Windows 10 Pro 4 GB 2TB
Windows 10 Home 4 GE 128 GB

https://learn.microsoft.com/en-us/windows/win32/memory/memory-limits-for-windows-releases

Single-process memory limits

Memory type Limit on X86 Limit in 64-bit Windows
User-maode 2 GB 2 GB with IMAGE_FILE_LARGE_ADDRESS_AWARE
virtual address Up to 3 GB with IMAGE_FILE_LARGE_ADDRESS_AWARE cleared (default)
space for each and 4GT 4 GB with IMAGE_FILE_LARGE_ADDRESS_AWARE
32-bit process set
User-mode Mot applicable With IMAGE_FILE_LARGE ADDRESS AWARE =&t
virtual address (default):
space for each x64: Windows 8.1 and Windows Server 2012 R2 or
B4-hit process later: 128 TB
x64: Windows 8 and Windows Server 2012 or
earlier 8 TB

Intel Itanium-based systems: 7 TE

2 B with IMAGE_FILE_LARGE_ADDRESS_AWARE
cleared

The memory limit of 2 GB is over!

https://learn.microsoft.com/en-us/windows/win32/memory/memory-limits-for-windows-releases

Virtual Memory

max

stack

ils=Taminanaas virtual memory

l

No corresponding
physical memory

I

heap

data

text

Virtual memory

(a process)

-a89 memory luinnannilagass (14 backing store das)

1lszlam1isag

-y process # address space suan 0 (lisiasn relocation)
- lidasl frame fiu page visuun Aaslmlasasnigld

As stack and heap grow, more pages will be
allocated and mapped to physical memory.

Virtual Memory

Demand paging (lazy swapping)

The OS only swaps a page into
memory when it is required by a

page 0 process. wuuiiazassinuiunismadnazdas
page 1 Tduazvin swap in 19a2euin
page 2 swap N
— 2
= Sape
= in
==
memory L »
map T Options
- backing store 1. Raw disk
e physical ’ 2. File system
, memory .
virtual
memaory Uszlaminanans virtual memory ae

Process ax13naes MEMOry nnd1 Memory fixass 116
Figure 10.1 Diagram showing virtual memory that is larger than physical memory.

Summary

i logical
fiu physical

utiaiflu page
144 contiguous

swap fiu
backing store

Virtual memory = mapping + paging + swapping

0 A

1 B

2 C

3 D

4 E

5 F

6 G

7 H
logical
memory

frame

valid-invalid
bit
/
¥

4

v
i
6 |v
i
i
v
i

= R W N = O

page table

10

11

12

13

14

15

physical memory

000

] [a] [e]
[c] [o] [€]

_d

HaEaN

_ e

backing store

valid Aa aguw memory
invalid fa lsiagus memory
aguu backing store

Page Fault

load M

@ page is on
~/ backing store

operating
system

reference

o

@

trap

\ i

frame #ldvias o
azaglu memory

Npe——

~
O,
restart page table
instruction
free frame < -~ - B4
_ . T
@ Q/ backing store
reset page bring in
table missing page
ohysical Locality of Reference
memory sz memory access lilald random address

asld paging uaz virtual memory 1a

Performance of Demand Paging

effective access time = (1 — p) X ma + p X page fault time.

With an average page-fault service time of 8 milliseconds and a memory-
access time of 200 nanoseconds, the effective access time in nanoseconds is

effective access time = (1 — p) X (200) + p (8 milliseconds)
= (1 - p) x 200 + p x 8,000,000
=200 + 7,999,800 x p.

We see, then, that the effective access time is directly proportional to the
page-fault rate. If one access out of 1,000 causes a page fault, the effective access
time is 8.2 microseconds. The computer will be slowed down by a factor of 40
because of demand paging! If we want performance degradation to be less than
10 percent, we need to keep the probability of page faults at the following level:

220 > 200 + 7,999,800 x p,
20 > 7,999,300 x p,

Page fault d1as
8ms /200 ns
= 40,000 wi

p = 0.001 4144

8.2 us /200 ns
=41 wn

p < 0.0000025. =25x 106 el effective access time iixiwlsiiu 20%

That s, to keep the slowdown due to paging at a reasonable level, we can allow
fewer that one memory access out of 399,990 to page-fault. In sum, it is impor-
tant to keep the page-fault rate low in a demand-paging system. Otherwise,
the effective access time increases, slowing process execution dramatically.

1a RAM lsiwanunngldany

Copy-on-Write

process;

physical
memory

process,

[Ppage A

- page B 1 |

page C —

Y

process ,

physical
memory

process ,

-~

[| pageA

T — page B 4—|_

page C —]

After forking. Parent and child
share the same copy.

Make another copy of page C
when a process writes.

v

copy of page C

Need for Page Replacement

frame valid-invalid
N\ ¢ bit
0 A 6| v
PC—> _
1 B . i
2 C 3l v
3 D 2| v

logical memory page table for

for process 1 process 1
frame valid-invalid
N/ bit
0 E 7\ v
1 F 41V
2 G [
3 H S| v

logical memory
for process 2

page table for
process 2

0 kerlnel
1Ly
2 D
3 C
4 F
5 H
6 A
7 E

physical memory

w

=

backing store

Find the location of the desired page on secondary storage.
Find a free frame:
a. If there is a free frame, use it.

b. 1If there is no free frame, use a page-replacement algorithm to select
a victim frame.

c. Write the victim frame to secondary storage (if necessary); change
the page and frame tables accordingly.

Read the desired page into the newly freed frame; change the page and
frame tables.

Continue the process from where the page fault occurred.

frame valid-invalid bit

N Y T

page out
change victim
0 |i to invalid @ page
LY / n B
@ .. o— madirty bit/feraazandunauills
f| victim

reset page \
table for
page table
new page ®page in _\

desired
page

backing store

physical
memory

OS win modify bit vsa dirty bit 1syn frame waiiandy frame sdudslaign write (la dirty) azlaldsas@am
as backing store Tunilsdausndn dirty bit agiuansauas inndniraziilu memory controller Aannassninig
e frame du anfauasazdilan dirty bit = 1

Demand paging requires
1) frame-allocation algorithm -\ max. frame per process
2) page-replacement algorithm rage luuauilu victim

For example, if we trace a particular process, we might record the following
address sequence:

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,
0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105

At 100 bytes per page, this sequence is reduced to the following reference

string:]
Reference string

1,4,1,6,1,6,1,6,1,6,1

max. frame = 2 \iin page fault
max. frame = 3 1:iin page fault

Page Replacement Algorithms

1) FIFO page replacement
- Belady’s anomaly
2) Optimal page replacement
- Replace the page that will not be used
for the longest period of time.
- Similar to SJF, requiring future knowledge.
3) Least-recently-used (LRU) page replacement
- Counter, equip a counter for each entry in page table
- Stack, move the referenced page to TOS
4) LRU-approximation page replacement
- Additional-reference-bits algorithm
- Second-chance algorithm
- Enhanced second-chance algorithm

Page Replacement Algorithms (cont.)

5) Counting-based page replacement frequently # recently
- Least frequentlv used (LFU) page-replacement algorithm
Lm:ﬁjﬁzm - Most frequentlv used (MFU) page-replacement algorithm

6) Page-buffering algorithms (\flunaiiaasu)

Page fault, not choose a
victim, borrow a frame

— N
N A

Delay writing out or
do it when CPU is idle.

Increase response time.

>
A process Pool of Backing
Max. frame =3 free frames store

reference string

7 0 1 2 O 3 0 4 2 3 0 3 2 1 2 0
@wan 7 1w victim wanzidu first-in
g

7|7 2 21 12| |4| |4| |4] |O 0| (O
0| 10] |0 3| |3 |3 |2] |2] |2 1] (1
11 |1 11 10 |Of |Of [3] |3 3| |2

page frames

Figure 10.12 FIFO page-replacement algorithm.

--- Bela

number of page faults

number of frames

Figure 10.13 Page-fault curve for FIFO replacement on a reference string.

reference string

/ 0 1 2 0 3 0 4 2 3 0 3 2 1 2 O
, i@en 7 W victim wsnz optimal (Bnuundnasld 7 anesa)
7| [7] [7F[2 2 2 2 2
0| (O] (O 0 4 0 0
1] |1 3 3 3

page frames

Figure 10.14 Optimal page-replacement algorithm.

reference string

/7 o0 1 2 0 3 0 4 2 3 0 3 2 1 2
o wan 7 u victim wanzidu least recently used

7|7 |7] |2 2 41 (4] |4| |O 1
0| (O |O 0 O (O] |3 |3 3
11 |1 3 3| [2] [2] |2 2

page frames

Figure 10.15 LRU page- replacement algonthm.

LVIN@‘ML@@T] L@@ aelo0 Lﬂ'WN

1. 5ia counter 1driuyn frame

2. counter %ﬁﬁ%ﬁﬁj}ummm

3. counter agzgn reset Wildnwinu 0 waiinisld frame o
4. LRU #eiden frame i counter fidunnfign

reference string
4 7 0 7 1 o0 1 2 1 2 7 1 2

2 !/ Y Y
a b
1 2
0 1
7 0]
4 A sanagansgaiily victim waua
stack stack o114 page lalu stack 1% pop
y h nauldau (deldlduwgn)
before after “"P% |
a b

Figure 10.16 Use of a stack to record the most recent page references.

= 9/ng v 1 [
MHNBURLABHN TANNBEIA1NTA

Additional-reference-bits algorithm

Counting is more expensive

then shifting

Shift right (less registers than counter) Example

1000 0000
NN W W W W W 100ms

0100 0000
100ms

MSB LSB 0010 0000

. . . 1010 0000
Each page has a corresponding 8-bit register. 1o

. . 0101 0000
If the page is accessed, MSB is set to 1.

Every 100 ms, shift-right (+2) all registers.

The page with the lowest number is the LRU page.

0

unsigned int!

wadldlueanlalnann winlsfle (Usuld >100ms) wsldn 8 sians
wHaun1sld counter wailunisdszunnen

Second-chance algorithm

f
FIFO + Second Chance "

Referenced Set ref. bitto 1
1 Give the second chance, clear
0 Replace

0

The first item
in queue next —=P
victim E

Step]

1. Wduan FIFO Suainiiafn
2. o ref bit = 0, 1a victim uan
an ref bit = 1, clear lumqanlyl 0
3. a1qazdasunEalusl
(1n second chance fuuun)
4. ala victim uaa lvluan new
page uviu victim uazluilal
savnaA? muvannis FIFO 1
If a page is used often enough
to keep its reference bit set, it
will never been replaced.

(a)

pages

< = @ <EH 2

v

_/

circular queue of pages

reference pages
bits

T9lanna 0

an 1 Asq

\ 0
Clear

Clear

< & & |

Victim
—=p/ 0
Load new page]
Set ref bitto 1
Move to the last

in queue

v
_/

circular queue of pages

(b)

Enhanced second-chance algorithm (modify bit)

reference bit (0 Aaiiuaa 1s second chance 11luan)
/ modify bit (0 = not modified, 1 = modified)
first choice (0, 0) neither recently used nor modified — best page to replace
(0, 1) not recently used but modified — not quite as good and need writing disk

(1, 0) recently used but clean — probably will be used again soon
last choice (1, 1) recently used and modified — used again soon and need writing disk

dszlagiaasnisiaan modify bit = 0 Aa reduce 1/0 traffic.

Allocation of Frames

1) Minimum number of frames

- Instruction set architecture:
add al a2 a3 min=3
Id r1 a4 min=1
2) Allocation algorithms
- Equal allocation 1ysivn process win < i
- Proportional allocation naglwmuanusanisld memory aasusias process

Equality
AATNLNILNEN

Equity

AINHLANBN A

Justice
AATNEADTTN

| gy 84
4 ___#r‘ g

/

The assumption is that Everyone gets the All 3 can see the game
everyone benefits from supports they need without supports or
the same supports. This (this is the concept of accommodations because

is equal treatment. "“affirmative action”), thus the cause(s) of the
producing equity. inequity was addressed.

Global vs. Local allocation

1) Local allocation
- a process uses max frames.
- when requesting a free frame, choose a victim
from its own set of allocated frame.
2) Global allocation
- choose a victim from the set of all frames,
even if that frame is currently allocated to
some other process.

MAJOR AND MINOR PAGE FAULTS

As described in Section 10.2.1, a page fault occurs when a page does not
have a valid mapping in the address space of a process. Operating systems
generally distinguish between two types of page faults: major and minor
faults. (Windows refers to major and minor faults as hard and soft faults,
respectively.) A major page fault occurs when a page is referenced and the
page is not in memory. Servicing a major page fault requires reading the
desired page from the backing store into a free frame and updating the page
table. Demand paging typically generates an initially high rate of major page
faults.

Minor page faults occur when a process does not have a logical mapping
to a page, yet that page is in memory. Minor faults can occur for one of two
reasons. First, a process may reference a shared library that is in memory, but
the process does not have a mapping to it in its page table. In this instance,
it is only necessary to update the page table to refer to the existing page in
memory. A second cause of minor faults occurs when a page is reclaimed
from a process and placed on the free-frame list, but the page has not yet
been zeroed out and allocated to another process. When this kind of fault
occurs, the frame is removed from the free-frame list and reassigned to the
process. As might be expected, resolving a minor page fault is typically much
less time consuming than resolving a major page fault.

(V) Resource Menitor — O X
File Meonitor Help

Overview CPU Memaory Dick Metwork

Processes F® 3650 Used Physical Memory L } Views -
[] image PID Hard Faults... | Commit (KBl Working 5... Shareable [... Private (KB ™ Used Physical Memory 100% S
[] pefmon.exe 10380 0 38,388 55,760 19,140 36,620

[] MsMpEng.exe 4434 0 436,576 302,396 54 468 247,928

[] svchostexe (... 3360 0 4052 £,008 3,256 2,752

[] Memary Co.. 2720 0 776 134,616 0 134,616

[] svchost.exe .. 2800 0 3,168 8,132 6,516 1,616

(] chrome.exe 8340 0 329,044 410,988 121,168 289,820

[] svchost.exe (... 1632 0 757,272 261,620 6,972 254 643 60 Seconds 0% -
[] ehrome. exe 17048 0 243,236 308,128 85,236 222,297 Commit Charge 100%
[] search&pp.e.. 1232 0 285,220 273,628 92,412 181,216

-

o4 A

ST A

Ea Tl s Fa

AT s a

s e il W

Physical Memory

B cSoag MEIN Use

™ 9931 ME Available

B Modified B standby

DHardware
Reserved
&0 MB

iln Use

5846 MEB

427 MEB

Available 931 MB
Cached 2818 MB
Total 16304 MEB
Installed 16384 ME

|:| Free

23591 MB 7540 MEB

Hard Faults/sec

0% -

100

Linux OOM

kernel suspends

(out—of-memory) reclaiming
pages
A
_______________ b~ d _ maximum
threshold
-
Q
=
£
" OOM Reaper az reclaim frames annwn process
= wali process luivinauls wifdiasiiasann swapping minimum
""""""""""""""""" threshold
a C
Linux\%ﬁ OOM Killer Lﬁ;/tlerminate U9 process

v

kernel resumes
reclaiming

pages

Thrashing

Definition: high paging activity.

SNVSERATH
(wn process) |
A
|
|
| = a
| Hwang process Al
uele frame i
c |
O .
= | thrashing
N >
= |
=
- |
o
U |
|
|
|
|

degree of multiprogramming
#process luready queue

Working-SEt Model Working set = set of pages in the most

recent A page references.

page reference table
. ..2615777751623412344434344413234443444...

-+ & FT * & "T
I

t t
WS(t,) = {1 ,2,5,6,7}1 WSi(t,) = {3,4)

The most important property of the working set, then, is its size. If we

compute the working-set size, WSS;, for each process in the system, we can
then consider that

wiu P1 e WSS =8, P2 14 WSS = 6
Demand D =Y WSS, -8+6 =14

where D is the total demand for frames. Each processis actively using the pages
in its working set. Thus, process i needs WSS, frames. If the total demand is
greater than the total number of available frames (D > m), thrashing will occur,
because some processes will not have enough frames.

i1 demand > supply (allocated frames) fin frame 1Wusiaz process (equally or proportionally)
witlddl frame wiaauda Tan degree of multiprogramming vieanaiuau process lu ready queue

Page-Fault Frequency

page-fault rate

ﬂﬂﬂﬁ/\‘]ﬁ‘z‘]_li_l
(nn process)

Increase number
of frames

upper bound

lower bound

decrease number
of frames

Y

number of frames

Working sets and page fault rates

11213123123212321

4546556645444

Single process

page
fault
rate

1

data

1

working set

page fault an \fiasan
Tuan working set unasuuan

Fain page fault \fiasann
process ¢nelil working set lusi

time

Chapter 10 Virtual Memory

10.1 Background 389 10.8 Allocating Kernel Memory 426
10.2 Demand Paging 392 10.9 Other Considerations 430

10.3 Copy-on-Write 399 10.10 Operating-System Examples 436
10.4 Page Replacement 401 10.11 Summary 440

10.5 Allocation of Frames 413 Practice Exercises 441

10.6 Thrashing 419 Further Reading 444

10.7 Memory Compression 425

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

