2567

15 Auenew

Deadlocks

A process may utilize a resource
in only the following sequence:

System Model

1. Request

2. Use
3. Release

Necessary condition aas event A wunens

ouia event A azsiasnu necessary condition sae
winu necessary condition a1aazllinia event A ila
v drunduld undeeditn witdnenaazdulals (wundn)

Wi necessary condition Aa maufau @awas Laza1nA
a1m condition 1a condition wilslyl Ifazsy idunannisauwas

Necessary Conditions

1. Mutual exclusion (non-sharabre)

2. Hold and wait (holding at least one resource, and wait)
3. No preemption (resources cannot be preempted)

4. Circular wait

Resource-Allocation Graph

& Thesets P K, and E:
= P={P, Py, Ps)
o R={Ry, Ra, Ry, Ry}
J S E=1P — Ry, P— Ry R — Py, Ry — P, Bo— Py, Ry — Iy

e [esource instances:

= One instance of resource type Ry

= Two instances of resource type Ra
R . | . i
¢ i (Ine instance of resource type Ry
A,

! = Three instances of resource type Ry

Figure 7.2 HResource-allocation graph.

Resource-Allocation Graph

R: H'g
-] . L] E
VAVAWN
L y ‘i:’l (£
A\
a L
L] ™ |
A, » e |
Figure 7.3 HRescurce-allocation graph with a deadiock. Figure 7.4 Resource-allocation graph with a ¢ycle but no deadlock,

Circular Wait Necessary but not sufficient!

Methods for Handling Deadlocks

1.

2.

3.

Deadlock prevention

Prevent at least one of the necessary conditions.

azlinegnluud

Deadlock avoidance, cndition

Information in advance (wait/no wait requests).

Deadlock detection and recovery
Deadlocks arise, detected, and recovered.

. Do nothing

Performance deterioration, stop functioning, and need
to be manually restarted.

Deadlock Prevention

1.

2.

" Read-only file (sharable)
MUtuaI EXCIUSIOn CPU, memory (non-sharable)
Intrinsically non-sharable.

H Old s nd wa |t Whenever a process requests a resource,

it does not hold any other resources.
Request resources only when having none.

2.1 Request all resources at the beginning (low utilization)
2.2 Release all resources before making a request (cannot always release)
A process that needs several popular resources may have to wait

indefinitely (starvation). Often applied to resources whose state

N O p reem pt|o N can be easily saved and restored later.

wiu CPU way memory
If a request fails, the resources will be preempted.

Circular wait
Request resources in increasing order.

F(tape drive) =1
F(disk drive) =5
F(printer) = 12

Each process can request resources only in an increasing order.

Rule 1: Process can request R; that F(R;) > F(R;)

Rule 2: If requesting Rj, process must have released any R;that
F(R;) > F(Rj).

It must also be noted that if several instances of the same resource
type are needed, a single request for all of them must be issued.

If the two rules are used, then the circular-wait condition cannot hold
(proof by contradiction).

Wrong Implementation

vold transaction (Account from, Account to, double amount) {

Semaphore lockl, lockZ2;
lockl = getLock (from);
lock2 = getLock (to);

walt (lockl); &eamuatsuunan
walit (lock2); &amfrom rau udresédan to

withdraw (from, amount);
deposit (to, amount);

signal (lockl) ;
signal (lock?2) ;

_ «— AccX
Transaction (AccX, AccY, 25);

Transaction (AccY, AccX, 50);

AccY

How to correct the program to prevent deadlock?

Deadlock Avoidance

A state is safe if the system can allocate resources to each process (up to its

P;, the resource requests that P; can still make can be satisfied by the currently
available resources plus the resources held by all P;, with j < /. In this situation,
if the resources that P needs are not immediatel v available, then P, can wait
until all P; have finished. When they have finished, P; can obtain all of its
needed resources, complete its designated task, return its allocated resources,
and terminate. When P; terminates, P, can obtain its needed resources, and
so on. If no such sequence exists, then the system state is said to be unsafe.

pp. 295

Figure 7.5 Safe, unsafe, and deadlock state spaces.

Maximum Needs Current Needs

P[J 10 5 o <
._ " e request v
Pl 4 = T#lluan 1l safe
P 9 2 » 3

. # tape drive dvetf 3 6o
Total 12 tape drives. terminate P1 ufoil tape drive 4195 ¢

Safe sequence: <P1, PO, P2> terminate PO usoil tape drive 419 10 sia
terminate P2 uaai tape drive 11912 6

Suppose that P, requests 1 more tape drive and is allocated.
System is no longer in safe state.

Deadlock may occur, for instance,

P, is allocated and returns all tape drives e e

(12 -5-0-3) =4 tapes are available).
P, needs 10 - 5 = 5 tape drives to terminate. 5 6

P, needs 9 - 3 = 6 tape drives to terminate.
Deadlock!

Resource-Allocation-Graph Algorithm

Cycle-detection algorithm
O(n?) where n is number of processes.

38#l4nu resource 7
multiple instance laila 11!

Figure 7.7 An unsafe state in a resource-aliocation graph.

n1 deadlock avoidance

’ [J
Ba n ke s Algo rlt h m Tnadadndneenli request azegluaniuz safe visaly

n number of processes
m number of resource types
Available vector of length m (number of available instances)
Max n x m matrix (maximum demand)
Allocation n X m matrix (humber of allocated instances)
Need n X m matrix (remaining resource need)

H

m\mu

m\mu
100 «UV' \oo Y.

‘ 100w ‘ nnAuNRuling 100 um

Safety? Algorithm

1. Avail=(3, 3, ..., 2) // vector of length m
Term = (false, false, ..., false) // vector of length n
true Aa process vsuaia, false Aads
2. Find an index i such that both

a. Term[i] = false Main idea:
b. Need; < Avail lau safe sequence

3. Avail = Avail + Alloc;
Terml[i] = true;
Goto step 2

4. If Term[i] == true for all i, then the system is in safe state.

Time complexity = O(mn?) genin cycle detection algorithm

Resource-Request Algorithm Main idea:

ey request fiaasannsdnlipnan

Allocation Max Available Need — winiy safety algo 41 safe el
ABC ABC ABC ABC
Py 010 753 332 P, 743 @
P, 200 322 P 120 Safe (i safe seq > 1)
B O
gg 302 902 P, 600 <P1,P3,P4,P2,PO>
P3 211 222 P 011
002 433 P:L 431

@ P, requests (1, 0, 2) and granted.

Need — Available

Allocation

ABC ABC ABC
P, 010 743 230 @
p, 302 020 Safe, then granted
P, 302 600 <P1,P3,P4,Pq,P5>
P, 211 011
P, 002 431

@ P, requests (3, 3, 0) notenough available resources
Py requests (0, 2, 0) unsafe

Deadlock Detection

e Single instance
Resource-allocation graph called wait-for graph.

-
Fi = \"I
L
oy

) A 7 Cycle = Deadlock
N ; <
\(I annznsal single instance
&
(b)

Figure 7.8 [a) Resource-allocation graph. (b) Corresponding wait-for graph.

* Several instance
Deadlock-detection algorithm (similar to Safety algo).

Deadlock-Detection Algorithm

1. Avail=(3, 3, ..., 2) // vector of length m
Term = (false, false, ..., false) // vector of length n

2. Find an index i such that both
a. Term[i] = false

b. Request; < Avail Main :deg:
annAnsol best case
o - 19n process azli request vivs
3. Avail = Avail + Alloc;

wenenalaldyn process vnauigsa

Terml[i] = true; S 3
avntale nine deadlock wan

Goto step 2
4. If Term[i] == false for some i, 0 <i<n, then P; is deadlocked.

Time complexity = O(mn?)

ldFasg Max visa need

Current

Allocation Request
ABC ABC
010 000
200 202
303 000
211 100
002 002

Allocation Request
ABC ABC
010 000
200 202
303 001
211 100
002 002

f‘_ﬁﬁﬂ:’{ﬂhh&

ABC
000

_z_f‘_lz.*m'_(_ﬂh:'c-f

ABC
000

No deadlock

Deadlock!

Detection-Algorithm Usage fasiansoun

1. How often is a deadlock likely to occur?
2. How many processes will be affected by deadlock when it happens?

Recovery from Deadlock

1. Process Termination
Abort all deadlocked processes (i deadlock fitien uaznsznu process suaulsinnn).

Abort one process at a time until the deadlock cycle is eliminated.

2. Resource Preemption
Selecting a victim.
Rollback (due to resource preempted, total rollback = restart).
Starvation (re-preempt from the same process over and over).

Which method handles deadlock from Linux, Unix,
Windows 7, and 10?

i Larye Parkins, Linux user & sysadmin since 1994 ®
b Answered Dec 10, 2018

Windows SQL server has a lock monitor that attempts to detect and resolve
deadlocks automatically, only possible because databases have a rollback feature.
Unix and Linux, because they deal with asynchronous independent processes, don't
have any internal mechanism for dealing with deadlocks, the type of monitoring used
by the more controlled database model is simply not cost effective for the rare times
deadlocks occur. Deadlocks are more likely to occur between different branches of a
threaded or forked process, (i.e., like a database) and are therefore preventable by
careful design and require manual intervention to break when they do occur.

lu database ui deadlock s w3z rollback transaction 1a
Tne rollback transaction vawun/vizenazuila aundn deadlock azmnslyl

https://www.quora.com/Which-method-handles-deadlock-from-Linux-Unix-Windows-7-and-10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

