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Process Synchronization

N 7N

Buffer

Producer

nasll buffer (memory)
&mnsnan,/dnsnisuiina Tulwindu

m Producer Consumer Linux Command

gzip tar cvf - . | gzip > target.tar.gz

2 cat grep cat dictionary | grep board

ldfiud@auasansanan [Wauas MEMOoOry unu
wazliilans memory unn



Circular Queue

count=3
BUFFER _SIZE=8



Producer & Consumer problem

Producer:
while (g3sas produce as) {
while (count == BUFFER_SIZE) { }
buffer[in] = nextProduced
in = (in + 1) % BUFFER_SIZE
count++
}
Consumer:

while (g3sas consume asi) {
while (count == 0)
nextConsumed = buffer[out]
out = (out + 1) % BUFFER_SIZE
count --



Race Condition

count++ instr 1: registerl = count

instr 2: registerl = registerl + 1
instr 3: count = registerl

count-- instr 1: register2 = count

instr 2: register2 = register2 -1
instr 3: count = register2

Let count=5
Executing (single core) 121 2 3 3 results in “count = 4”

We would arrive at this incorrect state because we allowed both processes
to manipulate the variable count concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is called a race condition. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
the variable count. To make such a guarantee, we require that the processes be
synchronized in some way.



y

Win code winlililasiu
critical section

N

Critical Section

entry section A solution to the critical-section

problem must satisfy:

critical section 1. Mutual exclusion
process/thread ‘a4

critical section #az 1 wiiu

exit section 2. Progress

wan process/thread a1y
critical section lsaun
lufamna deadlock
remainder section 3. Bounded waiting
$utlsefudnsawnlaiifunaninnuue
aziaslaidn critical section




Cache Coherence

ADAARD
CPU1 CPU 2 CPU 3
SHARED MEMORY
[X:24]
CACHE 1 CACHE 2 CACHE 3
SHARED BUS

Processor 1 read X : obtains 24 from the memory and caches it.
Processor 2 read X : obtains 24 from memory and caches it.

Again, processor 1 writes as X: 64, lts locally cached copy is updated. Now, processor 3
reads X, what value should it get?

Memory and processor 2 thinks it is 24 and processor 1 thinks it is 64.

https://www.geeksforgeeks.org/cache-coherence/



Memory Barriers

I. Strongly ordered, where a memory modification on one processor is
immediately visible to all other processors.

)

Weakly ordered, where modifications to memory on one processor may
not be immediately visible to other processors.

Synchronizes memory access as follows: The processor executing the current thread cannot

reorder instructions in such a way that memory accesses prior to the call to MemoryBarrier()

execute after memory accesses that follow the call to MemoryBarrier().

C# I Copy

public static wvoid MemoryBarrier ();

For most purposes, the C# lock statement, the Visual Basic SynclLock statement, or the Monitor
class provide easier ways to synchronize data.



ARUQAISUAUIEUUS

boolean flag = false,
int x = 0;

where Thread 1 performs the statements

while (!flag)

print Xx;
and Thread 2 pertorms
Xx = 100; i reorder 2 Mol _
flag = true; thread1 9: print O unun?: print 100

v:(vtd MemoryBarrier() lUaSVIKU?
IWDIH Thread 1 Wuw (print) 100 DonUILaUD



Peterson’s Solution

int turn;
bool flag[2];
Process 0

// turn = 0, 1 process that is allowed to execute in its CS.
// flag[i] = true, process i is ready to enter its CS.

Process 1

lasdisusouts turn new azlald €S nau

:flag[O] TRUE; PO wiaudn CS |
turn=1; dusnaes P1 '

' while (flag[1] && turn == 1); |

remainder section

/\

. If|ag[1] TRUE; :
| turn = 0; |
: while (flag[0] && turn == |

remainder section

Mutual exclusion, progress, bounded waiting are satisfied. usvinlaua 2 process winiiu




Process 0 —_—>

dramde turn = 1 wnnau

turn=1

pProcess 1

Figure 6.4

-

drapds turn = 0 unau

turn=0, flag[1] = true

* | flag[0] = true

PO waz P1

1 CS wiaunu

—

C5

E:
=

time

The effects of instruction reordering in Peterson’s solution.



Sync. HW: TestAndSet

bool TestAndSet(bool *target) { // atomic instruction

bool rv = *target;  °®¢V [/ rv trazuanade return value
pass by reference

*target = TRUE;

return rv; .
! Shared variable

}
3usu lock = FALSE; \
N

while (TestAndSet(&lock)); while (TestAndSet(&lock));
// critical section // critical section
lock = FALSE; lock = FALSE;
// remainder section // remainder section

Not satisfy bounded-waiting requirement!




aglu textbook asuinin

Bounded-waiting mutual exclusion

FaganAnlil process nsent
susiu waiting[i] = false uaz lock = false

waiting[i] = TRUE; process i sal4 CS
key = TRUE; :iprocess ‘i CS o

— 5 while (waiting[i] && key) key = TestAndSet(&lock);
waiting[i] = FALSE; '#.1% CS uin

// critical section

j=(i+1)%n; Auwn process fisald CS (wildnieaan)

while ((j != i) && !waiting[jl)j=(j + 1) % n;

if (j ==i) f process auiisald CS
lock = FALSE; ;0ck 1Js0e CS

else 7 process j sel4 CS
waiting[j] = FALSE; ssueu CS 1% process Fawsniedialunieman

// remainder section



aglu textbook asuinin

Sync. HW: Swap

void Swap(bool *a, bool *b) { // atomic instruction
bool tmp = *3;
*3 = *p;
*b = tmp; Shared variable

}
lock = FALSE;

key = TRUE; / key = TRUE;

while (key == TRUE) Swap(&lock, &key); while (key == TRUE) Swap(&Ilock, &key);
// critical section // critical section

lock = FALSE; lock = FALSE;

// remainder section // remainder section

Not satisfy bounded-waiting requirement



int compare_and_swap(int *value, int expected, int new_value) {
int temp = *value;

if (*value == expected)
*value = new_value;

return temp;

}

Figure 6.7 The definition of the atomic compare_and_swap () instruction.

Gudulock =0
while (true) {
while (compare_and_swap(&lock, 0, 1) !'= 0)
; /* do nothing */
/* critical section */

lock = 0;

/* remainder section */

Figure 6.8 Mutual exclusion with the compare_and_swap () instruction.



boolean waiting[n];
int lock;

while (true) {
waiting[i] = true;
key = 1;
while (waiting[i] && key == 1)

key =!compare_and_swap (&lock,0,1);, 14 TestAndSet() Als

waiting[i] = False: ~~~ T
: Intel 14 compare_and_swap

/* critical section */
j =@+ 1) % n;

while ((j '= i) && 'waiting[j])
j=( + 1) % n;

if (j == 1)
lock = 0;
else

waiting[j] = false;

/* remainder section */

Figure 6.9 Bounded-waiting mutual exclusion with compare_and_swap ().



MAKING COMPARE-AND-SWAP ATOMIC

On Intel x86 architectures, the assembly language statement cmpxchg is
used to implement the compare_and_swap () instruction. To enforce atomic
execution, the lock prefix is used to lock the bus while the destination
operand is being updated. The general form of this instruction appears as:

lock cmpxchg <destination operand>, <source operand>

increment (&sequence) ;

where the increment () function is implemented using the CAS instruction:

void increment(atomic_int *v)

{

int temp;

do {
temp = *v;

}

while (temp != compare_and-swap(v, temp, temp+1));



while (true) {

acquire lock

library sinazusteridu

- acquire() \ critical section CHE
i FiabTa)
release() release lock lock (object)
remainder section // critical section

Figure 6.10 Solution to the critical-section problem using mutex locks.
The definition of acquire () is as follows:

acquire() {
while ('available)
; /* busy wait */
available = false;

}

The definition of release () is as follows:

release() {
available = true;

}

Calls to either acquire() or release() must be performed atomically.



On multiprocessor systems, ensuring atomicity exists is a little harder. It is still possible to
use a lock (e.g. a spinlock) the same as on single processor systems, but merely using a
single instruction or disabling interrupts will not guarantee atomic access. You must also
ensure that no other processor or core in the system attempts to access the data you are
working with. The easiest way to achieve this is to ensure that the instructions you are
using assert the 'LOCK' signal on the bus, which prevents any other processor in the
system from accessing the memory at the same time. On x86 processors, some
instructions automatically lock the bus (e.g. 'XCHG') while others require you to specify a
'LOCK' prefix to the instruction to achieve this (e.g. 'CMPXCHG', which you should write as
'LOCK CMPXCHG op1, op2’).

OS asanauiiluwuy non-preemptive wwsrz CPU sslsifi atomic instruction astusasyia critical
section lviaFanaulaas CPU 1ty iPad, i0S < 4 (a1aazinwszwmiun kernel laivusas)

https://stackoverflow.com/questions/49346612/atomic-operation-definition-and-multiprocessor



LOCK CONTENTION

Locks are either contended or uncontended. A lock is considered contended
if a thread blocks while trying to acquire the lock. If a lock is available when
a thread attempts to acquire it, the lock is considered uncontended. Con-
tended locks can experience either high contention (a relatively large number
of threads attempting to acquire the lock) or low contention (a relatively
small number of threads attempting to acquire the lock.) Unsurprisingly,

highly contended locks tend to decrease overall performance of concurrent
applications.

saatinannsan Lock Contention wiu
- uan lock ansusaziiny@suians (account) 1414 global lock swaen
- uan lock aes reader(s) uaz writer luwiloyun readers-writers problem



Semaphores

lu critical section & resource ag S @u 1lw mutual exclusive

wait(S) { signal(S) { )
while (S <= 0); // lsifinswensivaa sassa S++; // Aunswains 1 3u
S--; // Sanswennslald 1 Fu }

}

= o o taid
S ARAUIUNTNENNINH

a1 1 process linswens 1 3u Aazidnld CS lansauruldinu S process(es)

S is a shared variable
between process

/ \

wait(S)
Critical section
signal(S)

wait(S)
Critical section
signal(S)

Semaphore \ilu system call #381lasriu concurrent
threads \du n1svih S++ maaWendu increment() #l4
A1ds compare-and-swap n1svih S-- finane ¢ Ny



Semaphores: spinlock

// n = #iresources

ugnsaaundnazidi CS la wia

it(n); < . . i
wait(n); uun time slice / time quantum
// critical section nsugasa CS vinlé 2 wuude
1. Spinlock 14 time slice sialdl
signal(n); 2. No spinlock 3un context-switch
// remainder section

w1 CS
I

Ve

Spin rima while loop 3a CS

user process
: user process ! o r
Spinlock P 1awald CS
Kernel
. user process another process
No spinlock P (scheduler) P

Semaphore (spinlock / no spinlock) Asslsisulsznu bounded waiting !!!



Semaphores: no-spinlock

typedef struct { - €—— value —/> +
int value; o o
truct process *list; AAuAa #process AuanAa #process
> P ! nsavabgd CS yeaanisarn CS e

} semaphore;

6 <= 0 (WS1: value++ TUuadd
wu -1, -2, -3 >=nareWlu O, -1, -2

wait(semaphore *S) { signal(semaphore *S) {
S -> value--; S -> value++;
if (S -> value < 0) { if (S -> value <=0) {
append this process to S -> list; remove a process P from S -> list;
sleep(); // context switch wakeup(P); wHan FIFO
No spinlock
} }
} }

Ensure bounded waiting by FIFO queue



Spinlock: A case study

Error diffusion on multi-core processors

v spinlock ialsilwiin context switch
14 loop sauaruusinasa assan semaphore

. Processed pixel (with error diffusion data available)
] Pixel being processed

Un-processed pixel

Row being processed by Thread 1
Row being processed by Thread 2
Row being processed by Thread 3

Left edge of page

Multiple threads are able to process multiple rows simultanscusly.




Race Condition in Web Application

Browser

Web
Application

Browser

Browser

NINANEN BUSUATATaaL

BupwnNn=0
dl = v o 9 O <
Lu@uﬁgmmmauimmm hn=n+1
azadg id Wadmnsany year +n
8lsiTaeriu CS astlawld id aavdati
memimmmmmmqmmm@uLLm
azvgnsuasiag W N Aasldne 1,000
% 1 (%4 [-%4 -4 =Y o dl ol/
a1 ldleeru CS azsuaiansiiuan 1w



History's Worst Software Bugs

July 28, 1962 -- Mariner | space probe
1982 -- Soviet gas pipeline
1985-1987 -- Therac-25 medical accelerator (race condition)

At least five patients die; others are seriously injured.
1988 -- Buffer overflow in Berkeley Unix finger daemon

1985-1987 -- Therac-25 medical accelerator. A radiation therapy device malfunctions and delivers
lethal radiation doses at several medical facilities. Based upon a previous design, the Therac-25 was
an "improved" therapy system that could deliver two different kinds of radiation: either a low-power
electron beam (beta particles) or X-rays. The Therac-25's X-rays were generated by smashing high-
power electrons into a metal target positioned between the electron gun and the patient. A second
"improvement" was the replacement of the older Therac-20's electromechanical safety interlocks
with software control, a decision made because software was perceived to be more reliable.

What engineers didn't know was that both the 20 and the 25 were built upon an operating system
that had been kludged together by a programmer with no formal training. Because of a subtle bug
called a "race condition," a quick-fingered typist could accidentally configure the Therac-25 so the
electron beam would fire in high-power mode but with the metal X-ray target out of position. At
least five patients die; others are seriously injured.



http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Race_condition

lock Statement (C# Reference)

class Account

{
decimal balance;
private?Object thislLock = new Object();
fin static aziilu global lock (# lock wesdien dwsunn <) account)
public void Withdraw(decimal amount) inlock contention g
{
lock (thisLock)
{
if (amount > balance)
{
throw new Exception("Insufficient funds");
}
balance -= amount;
} = = le/ v v = o I
} eI TLaL D1 kdHANge lock
} . &

paaniraddnlilsunsai bug dals ?

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement



Synchronization Example



7.1.1 The Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 6.1; it is commonly used
to illustrate the power of synchronization primitives. Here, we present a gen-
eral structure of this scheme without committing ourselves to any particular
implementation. We provide a related programming project in the exercises at
the end of the chapter.

In our problem, the producer and consumer processes share the following
data structures:

int n; nneves buffer (buffer size)
semaphore mutex = 1; < thread fazdlUlf buffer
semaphore empty = n; <wuniu §msu producer
semaphore full = 0  <wiunanan dwst consumer

We assume that the pool consists of n bufters, each capable of holding one item.
The mutex binary semaphore provides mutual exclusion for accesses to the
butfer pool and is initialized to the value 1. The empty and full semaphores
count the number of empty and full buffers. The semaphore empty is initialized
to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 7.1, and the code
tor the consumer process is shown in Figure 7.2. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full butfers for the consumer or as the consumer producing empty
butters tor the producer.



g5y producer nane < process/thread

while (true) {

/* produce an item in next_produced #*/

wait (empty); Pproducer ssaasureuiniiivlu buffer sivels
wait(mutex) ;

nsuita buffer

/* add next_produced to the buffer */ .
lauanaz 1 thread

signal (mutex); . y
signal(full); uanconsumer dnuamanls 1 T

Figure 7.1 The structure of the producer process.

#115U consumer wans < process/thread

while (true) { . .
wait(full); consumer pmagaunauinluanante buffer vizald

wait (mutex);
uila data structure

/#* Temove an item from buffer to next_consumed */ L, .
misuanaz 1 thread

signal (mutex) ; Y
signal (empty); uan producer snenananliluan 1

/# consume the item in next_consumed #*/

Figure 7.2 The structure of the consumer process.

uns library 1 data structure iy thread-safe wae 1 lisasilaaiu CS g



7.1.2 The Readers-Writers Problem

Suppose that a database is to be shared among several concurrent processes.
Some of these processes may want only to read the database, whereas others
may want to update (that is, read and write) the database. We distinguish
between these two types of processes by referring to the former as readers
and to the latter as writers. Obviously, if two readers access the shared data
simultaneously, no adverse effects will result. However, it a writer and some
other process (either a reader or a writer) access the database simultaneously,
chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database while writing to the database. This
synchronization problem is referred to as the readers—writers problem. Since it
was originally stated, it has been used to test nearly every new synchronization
primitive.

The readers—writers problem has several variations, all involving priori-
ties. The simplest one, referred to as the first readers—writers problem, requires
that no reader be kept waiting unless a writer has already obtained permission
to use the shared object. In other words, no reader should wait for other read-
ers to finish simply because a writer is waiting. The second readers—writers
problem requires that, once a writer is ready, that writer perform its write as
soon as possible. In other words, if a writer is waiting to access the object, no
new readers may start reading.

nsthulfasulaanausiloyvn the first readers-writers problem



semaphore rw_mutex = 1; s reader(s) vie writer az14 db 16 (readers wanasaiuu 1)

semaphore mutex = 1; d1uau thread 7iazusla read_count uaz rw_mutex I
int read_count = 0; auau reader process 7iza read vsarngs read
while (true) { while (true) {
wait (rw_mutex) ; wait (mutex) ;
. read_count++;
/* writing is performed */ if (read_count == 1)
Coe wait (rwamutex); ., writer (£7)
signal (rw_mutex) ; signal (mutex) ; eanldriay

}

/* reading is performed */

wait (mutex) ;
read_count——;
if (read_count == 0)

signal (rw_mutex)

_ > reader sgavis
signal (mutex) ; ) o
! signal 1% writer

(18) dran’ls

Figure 7.3 The structure of a writer process.

Figure 7.4 The structure of a reader process.

Tutpauuy first problem wsny reader ndnunnuvas uns writer lunauls dd reader naunsihnias read agl

%

i1d reader wnunises < ldvga azvinlif writer fin starvation 14 (3l second problem wauid starvation)



TR eulusLnsuAI

- @519 thread 11 1,000 thread Ej@J 19% Tondu writer 80 99% U reader

_ %4 reader way writer a1 1 3unt (d delay %20)

- 1 synchronization gn WUsunsuA3saglaiaafuna 1,000 x 1% x 1 = 10 U9 vAY N5
AR writer agsn wA reader siuvinday o fula (Qvifiag thread A 1,000 3u9iasa)

~ thread 7l reader 1% print "reading” 1 ﬂ%gﬂ a7 sleep 1 U7

- thread Wiy writer 9% print "writing" 1 A% udn sleep 1 U

AN C# 3 semaphore

https://docs.microsoft.com/en-us/dotnet/api/system.threading.semaphore



7.1.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging to
one philosopher. In the center of the table is a bowl of rice, and the table is laid
with five single chopsticks (Figure 7.5). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). A philosopher may pick
up only one chopstick at a time. Obviously, she cannot pick up a chopstick that
is already in the hand of a neighbor. When a hungry philosopher has both her
chopsticks at the same time, she eats without releasing the chopsticks. When
she is tinished eating, she puts down both chopsticks and starts thinking again.




while (true) {
wait (chopstick[i]);
wait (chopstick[(i+1) % 5]1);

/* eat for a while x/

signal (chopstick[i]);
signal (chopstick [(i+1) % 5]);
/* think for awhile x/

a = Y] v = 1 v 1 = =
WEUMZNYUAUT 8B NaY LAYAREUNT LA LNI9UIN
anaazing deadlock s

Figure 7.6 The structure of philosopher i.



Several possible remedies to the deadlock problem are the following:
* Allow at most four philosophers to be sitting simultaneously at the table.

* Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this, she must pick them up in a critical section).

® Usean asymmetric solution—that is, an odd-numbered philosopher picks
up first her left chopstick and then her right chopstick, whereas an even-

numbered philosopher picks up her right chopstick and then her left
chopstick.

Note, however, that any satisfactory solution to the dining-philosophers
problem must guard against the possibility that one of the philosophers
will starve to death. A deadlock-free solution doesnot necessarily
eliminate the possibility of starvation.
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