wilapssangaiieduin 21 fuanaw 2567

Operating systems (OS)

user

user user

user

program

program program

program

operating system (providing services)

hardware

This can be done by trap routine.

WooONUNRWNR

Operating-system services

User interface

Program execution

I/O operations

File-system manipulation

Communication (.du copy & paste, drag & drop wiadassiuiasas)
Error detection

Resource allocation

Accounting (szuu user / group)

Protection and security (privilege / hacker)

1. User interface

BN Command Prompt

Microsoft Windows [Version 10.0.18363.1016]
(c) 2019 Microsoft Corporation. All rights reserved.

 Command-line interface (CLI)

- DOS
- Unix / Linux

C:\Users\chatc>_

* Graphical user interface (GUI)
- Windows » -
- Mac OS CEE
- Unix / Linux | N
- X-Windows systems
- K Desktop Environment (KDE)
- GNOME desktop

Yy v»
P PR £

Be »dudp
WEQECY o
Qo

H-Efon e ow ~ope M.

2. Program execution

The program must be able to end its execution, either normally or
abnormally (indicating error).

Examples

* hardware resource running low (CPU, memory, and battery).

* 1/0 error (fail to read or write 1/O devices, parity error).

* a connection failure on a network.

* a lack of papers in the printer.

* arithmetic overflow.

 dangling pointer (read/write a memory block with no ownership).

Genuine OS is supposed to be responsive and handle common errors.

3. 1/0 operations

For efficiency and protection, users usually cannot control 1/O devices
directly. Therefore, the operating system must provide a means to do 1/0.

Efficiency

* OS services are written by professionals (and optimized for speed).
» User programs are small (5anl4 device driver).

* User programs are portable (éelil4 hardware &iva/5uau « 14).
* OS can manage concurrency access and cache.
Device drivers
Protection
 Users must have permission to access 1/0O devices.
» User programs can deteriorate some 1/0O devices.

4. File-system manipulation

File-system services are create/delete /rename/search files and folders.
The rationale for file-system services is similar to that of 1/O operations.

5. Communications

There are many circumstances in which one process needs to exchange
information with another process iu copy & paste, drag & drop

Example

A running database program has to exchange information with several
programs that may be on the same computer or may be not.

6. Error detection

See example in Program execution.

7. Resource allocation

When there are multiple users or multiple jobs running at the same time,
resources must be allocated to each of them.

Resources

* CPU

* Memory

* File storage

* Printer & modem

* Other peripheral devices

8. Accounting

We want to keep track of which users how much and what kinds of
computer resources. This record keeping may be used for accounting (so
that users can be billed) or simply for accumulating usage statistics. Usage
statistics may be a valuable tool for researchers who wish to reconfigure
the system to improve computing service.

9. Protection and security

Protection involves ensuring that all access to system resources is controlled.
It should not be possible for one process to interfere with the others or
with the operating system itself. i1 memory protection

Security starts with requiring each user to authenticate himself or herself to
the system, usually by means of a password, to gain access the system
resources. It extended to defending external 1/0 devices, including
modems and network adapters, from invalid access attempts and to
recording all such connections for detection of break-ins.

Authentication n1aNgaLFaas
Authorization N13aYRYIA, N9 lHEIUIA

System calls (or trap routine)

User programs cannot control resources directly.

user user user user
program program program program

system call 1 | system call 2 | system call 3 | system call 4

operating system (providing services)

hardware

> myprog.exe

An example: copying a file > Enter source file: myfilel.dat
> Enter destination file: myfile2.dat

1. Read the first argument

Print to screen system call
Read keyboard system call
2. Read the second argument
Print to screen system call
Read keyboard system call
3. Open theinput file system call
Error: file is not found
4. Create output file system call
Error: file exists
5. Loop
Read system call
Error: hardware failure (parity error)
Write system call
Error: no more disk space
1. Closeinput file system call

2. Close output file system call

System call # Application programming interface (API)

Java fidld layer snn Swviheuds (LLd hardware 7 execute byte code)
program auaanuuy Java APIs irsunn wwsizgan system calls 221 OS unuaz
¥ wnen duladiuilas APls nauumilu system calls 16 inalulagiaa
Microsoft #inanariuda .NET Framework uaz .NET Core
AP user user
Abstraction VM preElein pregeing
layer for Java | | |
programmers
A\ Win32 API
system call 1 | system call 2 | system call 3 Abstraction
Ab _ layer for
straction _ , :
laver operating system (Windows) Windows
y programmers
for system
programmers AUSUNUNARINISG
hardware performance uaz
compatibility wdu ina

An example of Win32 API

BOOL WINAPI ReadFile(
__in HANDLE hFile,
__out LPVOID IpBuffer,
__in DWORD nNumberOfBytesToRead,
__out_opt LPDWORD IpNumberOfBytesRead,
__inout_opt LPOVERLAPPED IpOverlapped

);

Ref: http://msdn.microsoft.com/en-us/library/aa365467(VS.85).aspx

Inside ReadFile() involves several system calls which is specific to OS.
The executable code compiled using Win32 API are compatible with

Windows OS (Windows 98, Windows 2000, Windows XP, etc).

http://msdn.microsoft.com/en-us/library/aa365467(VS.85).aspx

System call: passing of parameters as registers (LC3 processor)

MEMORY REGISTER
0 parameter #1
1 Parameter #2
10 700 @ 2 Parameter #3 @
3 Parameter #4
200 @ 4 Parameter #5
system call

@

2000 — @ System call 10

user program @

System call: passing of parameters as a table (LC3 processor)

MEMORY REGISTER

0 2100 ©)

Pointer to table or array

[T]G

system call

2000 S @ System call 10

user program @

2100 | parameters #1 @
parameters #2

parameters #3
parameters #4
parameters #5

Types of system calls

Process control

end, abort, load, execute, create/terminate process,

wait for time, wait event, signal event, allocate and free memory,
get/set process attributes, lock & release

File management

create file, delete file, open, close, read, write, reposition,
get/set file attributes

Device management

request device, release device, read, write reposition,

get/set device attributes, logically attach/detach devices
Information maintenance

get/set time/date, get/set system data, dump, single step

get/set process, file, or device attributes

Communications

create, delete communication connection,

send/receive messages, transfer status information,
attach/detach remote devices, message-passing, shared-memory model
Protection

set/get permission, multi-user to networking environment

Richard Stallman GNU Project Linus Torvalds

[#%#1fie Free Software Y alia a5 Tand
Foundation (FSF)
Compiler / Debugger / Editor Linux kernel

Fuun Unix fieg luanesiu dssmsing 1 8 Unix 2eeqie9

\ J
|

1A Linux distribution s19 q ¥uunaune

GNU = GNU's Not Unix

Standard C library

#include <stdio.h>

int main() {
printf("Hello\n");
}

':> standard ':>
— Clibrary | <=

write()
system call

ansaiing hello.c uaz compile uu Linux

user mode

kernel mode

Loaders

memory

sourcecode

compile

N I

binary object

binary object
kernel

Linkers (static)

memory
standard
sourcecode library
(libc.a)
Multiple
copies of
compile link standard
library
load binary object
binary object linked object
kernel

Linkers (dynamic)

memory
shared >0 = _
: shared object
sourcecode library 1 Windows Single
(libc.so) Aalna .DLL copy of
standard
library
compile link
shared
v v ibrary
load
! ! binary object
binary object linked object
kernel
L e e - I

free memory

command
interpreter

kernel

load()
execute()

free memory

process

end()
abort()

command
interpreter

kernel

MS-DOS

free memory

command
interpreter

kernel

A portion of command interpreter is unloaded from memory.

free memory

fork()

command
interpreter

kernel

free memory

exec()

command
interpreter

command
interpreter

kernel

Free BSD

free memory

process A

command
interpreter

kernel

fork() and exec() are system calls for creating a process.

System programs

File management
create, delete, copy, rename, etc.

Status information
date/time, cpu/memory/disk usage

File modification
text editors (nano, notepad)

Programming-language support
compilers, assemblers, and debuggers (gdb)

Program loading and execution
Linkers and loaders, and debuggers

Communications
connection among processes, users, computer systems
browse web pages, send e-mail, remote login, transfer file

Operating-system desigh & implementation

Design Goals
User
convenient to use, easy to learn and to use, reliable, safe, fast
System
easy to design, implement, and maintain, flexible, reliable, error free
(server, desktop, real-time, embedded systems)
Mechanisms vs. Policies
Mechanism determines how to do something

Policy determines what to be done

Mechanism - Policy au ¢ idu
Password w3a Fingerprint - Authentication
X-window - K Desktop Environment (KDE) w3a GNOME
Cooperative/Preemptive (Timer Interrupt) - CPU scheduler uuu Time Sharing

Implementation
Assembly (MS-DOS), C/C++ (Unix/Linux)

https://en.wikipedia.org/wiki/Desktop_environment
https://stackoverflow.com/questions/4784500/policy-and-mechanism

Operating-system structure

Simple structure
MS-DOS, Unix (monolithic structure), see Figure 2.13

Layer approach
pros and cons, see Figure 2.14

Microkernels

Mach (mid-1980), see Figure 2.15

Remove all non-essential components from the kernel
Microkernels provides minimal process, memory management, and
communication facility (message passing).

Performance decrease (first-release Windows NT)

Modules

Core kernel + loadable kernels

Any module can call any other module (no message passing).
Apple Mac OS X = Mach + BSD (see Figure 2.16)

applications

glibc standard c library

system-call interface
file CPU
systems scheduler
networks memory
(TCP/1P) manager
block character
devices devices

device drivers

hardware

Figure 2.13 Linux system structure.

layer N
user interface

layer 0
hardware

Figure 2.14 A layered operating system.

The TCPI/IP Model

Internet Router

Network Access
WiFi

Fnasinad Windows NT
1w TCP/IP fl4udnnass

application
program

device
driver

interprocess
communication

messages

memory
managment

microkernel

CPU
scheduling

hardware

Figure 2.15

Architecture of a typical microkernel.

user
mode

kernel
mode

applications

-

user experie nce

User Interaction
1 mouse vza keyboard

API for Objective-C

R T application frameworks
macOS / i0S # feature sineriu

API #ldsaurile

- core frameworks
viu decode 35la / render 3D

Kernel 2124 i0S azsinesain macOS

) kernel environment (Darwin)
power / memory / security

Figure 2.16 Architecture of Apple’s macOS and iOS operating systems.

nmhwhe

System boot

Tidsunsuusn 15andn Bootstrap program

Basic input/output system (BIOS) \flu firmware saniis P = Programmable
ussqasly Read-only memory (ROM) %52 EPROM w5a EEPROM E = Erasable

BIOS azmsaaidaailnsal uazwn OS lu boot block #iagflu disk " - Flectrica!
GRUB lu boot loader lunsdifianss OS 13unndn 1 42 BIOS azluan GRUB riau
aniiu GRUB azuannylvigldiaandiaz boot OS sala wisaAanldTiasuiin
tlaqiiusianld vm 5u guest OS lauaasansaniu aaullnszudne host/guest OS laviui

Wsuuaf (firmware) luszuupaufiomas

A c o-ai 1 & s dl % 1

patansuadsat luanfauns Tnangldazaunsnanu
= Y Al 6 v 1 1 = =

wazFunldailsuuasls ualiaiuisoudla wew vize

AL UL

System Time:

VirtualBox - Error *©

|_ VT-x/ AMD-V hardware acceleration is
: not available on your system. Certain
guests (e.qg. 05/2 and QNX) require

this feature and will fail to boot without
it.

Close VM Copy

Continue

w1z Windows
wintiu Mac 1

Bus Speed ..

" bl L

a| Virtualization Technology Disable
Adjacent Cache Line Prefetch . Enalﬁ:zg
Hardware Prefetcher Ena

Demnd—Based Power Manag
Processor 11D

~4T)
fl- _ ¢Intel EMG4 1! L

© Advanced options

System Restore Command Prompt

Use a restore point recorded on your Use the Command Prompt for
PC to restore Windows advanced troubleshooting

System Image UEFI Firmware Settings
Recovery Change settings in your PC's UEFI

: 3 . firmware
Recover Windows using a specific

system image file

Startup Repair Startup Settings

Fox problems that keep Windows from Change Windows startup behavior
loading

UEFI is the abbreviation of Unified Extensible Firmware Interface, which is a firmware
interface for computers and it works as a "middleman" to connect a computer's firmware to
its operating system. It is used to initialize the hardware components and start the operating
system stored on the hard disk drive when the computer starts up.

UEFI possesses many new features and advantages that cannot be achieved through
the traditional BIOS and it is aimed to completely replace the BIOS in the future.

UEFI stores all the information about initialization and startup in a .efi file, a file stored
on a special partition called EFI System Partition (ESP). The ESP partition will also contain the
boot loader programs for the operating system installed on the computer.

It is because of this partition, UEFI can directly boot the operating system and save the
BIOS self-test process, which is an important reason for UEFI faster booting.

Apul

OS y1 Power-On
Self Test (POST)
i7andn BIOS e
Tdsunsu BIOS 1an
Laziuiudauunn
1adla 1 Sulvun 16-
bit 14 memory &
ua 1 MB sfuazAas
7 vimginsnlanfauad
1fiazs Tuanusd oS
arunnda hw wiaw
Aunazuang < fals
s

BIOS 'lsigunsa
boot OS a a3l
luninin 2.1 TB &

TndazaulAaN A ALAD

Windows 11 &
UEFI winiu

1 device driver \fu byte code n5uuu processor lanls
| welild network, graphics 16 neunazlnan OS

The UEFI implee'nation“is Bootstrap program Flash memory
usually stored on a NOR- Boot loader Master Boot Record EFI system partition
based flash memory! 11213l (MBR) (ESP)
that is located on the Mode 16 dm (I mem 141 MB) 32/64 in
mainboard. They can use Pre-OS environment - Network, GUI,
different 1/O protocols, but multilanguage
SPI is the most common. Programming Lang. Assembly C, Python

Windows product key OS disk UEFI firmware

fddeu key e activate dudn PC 14 key anliag

Memory Bottleneck

CPU CPU CPU CPU
core core core core

Traffic
(~

AJ
\—/

Non-Uniform Memory Access (NUMA)

CPU CPU CPU CPU
core core core core

Fast Fast

h 4 h 4

Memory < — > Memory

OS adelnsifannszanseuhliuluwsias core uazwenanuiulilsunsuson core & memory vetuu node thsarii

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

