unluasSvardatdodun 5 wauniAy 2568

2301361
SYSTEMS ANALYSIS

AND DESIGN

1

Moving into Implementation

you Rnow what
would be Cool?

https://plan.io/blog/scope-creep/

How does scope creep happen in project management?

7 ways to avoid scope creep and keep your project on track

> 1. Know your project goals from the start

> 2. Get serious about documenting requirements

> 3. Use project management software to keep everyone on track

> 4, Create a change control process

> 5. Set (and stick to) a clear schedule

> 6. Learn the proper ways to communicate with stakeholders and your team

> /. Protect your team against “Gold plating”

If you give in to every stakeholder demand,
you won’t be facing scope creep.
You’ll be facing a full-on scope eruption.

To take control of your project’s scope, you’re going to have to learn to say no
sometimes. Even to your boss, manager, or an important project stakeholder.
Saying no to people in power is never easy. But it’s the best way to protect the
quality of a project, and that’s exactly how you should think about it.

What is Diminishing Returns

Point of
A Maximum Yield

Point of
Diminishing
Return

I
- |
a |
i | [
= ' !
= I I
= Most ' Diminishing I~ egative
o Productive : Returns : Returns
I I
I |
Total Input

LifeHack

vty miZIB A | Avoiding Classic Implementation Mistakes

In previous chapters, we discussed classic mistakes and how to
avoid them. Here, we summarize four classic mistakes in the
implementation phase:

1. Research-oriented development: Using state-of-the-
art technology requires research-oriented development
that explores the new technology, because ‘“bleeding-
edge” tools and techniques are not well understood, are not
well documented, and do not function exactly as promised.
Solution: If you use state-of-the-art technology, you
should significantly increase the project’s time and cost
estimates even if (some experts would say especially if)
such technologies claim to reduce time and effort.

2. Using low-cost personnel: You get what you pay for.

The lowest-cost consultant or staff member is signifi-
cantly less productive than the best staff. Several studies
have shown that the best programmers produce software
six to eight times faster than the least productive (yet cost
only 50-100% more).

Solution: If cost is a critical issue, assign the best, most
expensive personnel; never assign entry-level personnel
to save costs.

3.

Lack of code control: On large projects, programmers
must coordinate changes to the program source code
(so that two programmers don’t try to change the same
program simultaneously and one doesn’t overwrite the
other’s changes). Although manual procedures appear to
work (e.g., sending e-mail notes to others when you work
on a program to tell them not to work on that program),
mistakes are inevitable.

Solution: Use a source code library that requires pro-
grammers to check out programs and prohibits others
from working on them at the same time.

Inadequate testing: The number-one reason for
project failure during implementation is ad hoc test-
ing—in which programmers and analysts test the system
without formal test plans.

Solution: Always allocate sufficient time in the project
plan for formal testing.

Adapted from: Rapid Development, Redmond, WA: Microsoft Press, 1996,
pp. 29-50, by Steve McConnell.

Test Planning

e Unit Tests

 Integration Tests user interface, use scenario, data flow, system interface testing
» System Tests

 Acceptance Test (Alpha)

- Acceptance Test (Beta)

Number of Errors Detected

Unit Integration System Acceptance Acceptance
Test Test Test Test (Alpha) Test (Beta)
Testing Stage o

AN malaPsnsIu stubs, hardcoded

Stage Types of Tests

Unit Testing Black-box testing:
treats program as black
box.

White-box testing:
looks inside the
program to test its
major elements.

Test Plan Source

Program
specifications

Program
source code

When to Use

For normal unit
testing

When complexity
is high

Notes

The tester focuses on whether the unit meets the
requirements stated in the program specifications.

By looking inside the unit to review the code itself,
the tester may discover errors or assumptions not
immediately obvious to someone treating the unit
as a black box.

Integration
Testing

User interface testing:

The tester tests each
interface function.

Use scenario testing:
The tester tests each
use scenario.

Data flow testing:
Tests each process in a
step-by-step fashion.

System interface
testing: tests the
exchange of data with
other systems.

Interface design

Use scenario

Physical DFDs

Physical DFDs

For normal
integration testing

When the user
interface
IS important

When the system
performs data
processing

When the system
exchanges data

Testing is done by moving through each and every
menu item in the interface either in a top-down or
bottom-up manner.

Testing is done by moving through each use scenario
to ensure that it works correctly. Use scenario testing
is usually combined with user interface testing
because it does not test all interfaces.

The entire system begins as a set of stubs. Each
unit is added in turn, and the results of the unit are
compared with the correct result from the test
data; when a unit passes, the next unit is added
and the test is rerun.

Because data transfers between systems are often
automated and not monitored directly by the
users, it is critical to design tests to ensure that
they are being done correctly.

System
Testing

Requirements testing:
tests whether original
business requirements
are met.

Usability testing: tests
how convenient the
system is to use.

Security testing: tests
disaster recovery and
unauthorized access.

Performance testing:
examines the ability
to perform under

high loads.

Documentation testing:

tests the accuracy of the
documentation.

System design,
unit tests, and
integration tests

Interface design
and use scenarios

Infrastructure
design

System proposal
and infrastruc-
ture design

Help system,
procedures,
tutorials

For normal
system testing

When user interface

IS irnportant

When the system
Is iImportant

When the system
Is iImportant

For normal
system testing

This test ensures that changes made because of
integration testing did not create new errors.
Testers often pretend to be uninformed users and
perform improper actions to ensure that the system
is immune to invalid actions (e.g., adding

blank records).

This test is often done by analysts with experience
in how users think and in good interface design.
This test sometimes uses the formal usability
testing procedures discussed in Chapter 8.

Security testing is a complex task, usually done by
an infrastructure analyst assigned to the project. In
extreme cases, a professional firm may be hired.

High volumes of transactions are generated and
given to the system. This test is often done using
special-purpose testing software.

Analysts spot-check or check every item on every
page in all documentation to ensure that the
documentation items and examples work properly.

Acceptance Alpha testing: System tests

Testing

conducted by users
to ensure that they
accept the system.

Beta testing: usesreal No plan
data, not test data.

For normal
acceptance testing

When the system
is important

Alpha tests often repeat previous tests but are
conducted by users themselves to ensure that they
accept the system.

Users closely monitor the system for errors or
useful improvements

Developing Documentation

WLUTELANMONEITAVNE 9

« System Documentation
« User documentation

WUIYSZENNLONEITHIN LD
« Reference documents

e Procedures manuals
« Tutorials

3 hours per page (single-spaced)

Reference Documents

hd m Excel functions (alphabetical) - X + —

« =2 C M s support.microsoft.com/en-us/office/excel-functions-alpha... & ¥ E © 9 Y =

Function name Type and description
ABS Math and trigonometry: Returns the absolute value of a number
ACCRINT Financial: Returns the accrued interest for a security that pays

periodic interest

ACCRINTM Financial: Returns the accrued interest for a security that pays
interest at maturity

ACOS Math and trigonometry: Returns the arccosine of a number

ACOSH Math and trigonometry: Returns the inverse hyperbolic cosine of a
number

Procedure Manuals

d519 clustered bar chart

A E C
1 |Type Count Genl CountGen2
2 |Grass 12 9
3 |Fire 12 g
4 |Water 30 18
5 |Bug 13 10
b

HA1YI U D

File Home Insert Draw Page Layout Formulas
[5]==] "
A EHBE D
Function Table PivotTable | Picture Shapes Office Column Line
v Add-ins v w
Functions Tables Ilustrations Add-ins
Y3l - fx
A B C D E F
1 Type Count Genl Count Gen2
2 |Grass 12 9
3 |Fire 12 8
4 |Water 30 12
5 |Bug 13 10
&
7 Chart Title
8
10
e P K ————
12
13 i
a] e
15
| o | —
17
18 0 5 10 15 20 25 30
19 mCount Gen2 @ Count Genl
20
21

22

Data Review

O QA H

Wiew

Bar Area Scatter Other
Charts ~

w B £

Charts

35

Help
‘&

Hyperlink

Links

£ Editing ~

i
Mew Text

Comment

Comments

Box

Text

Tutorials

v @ Excel Tutorial b +
< X M 25 w3schools.com/excel/
W
Tutorials =
schools

HTML CSS JAVASCRIPT

Excel Tutorial

Excel HOME

Excel Introduction
Excel Get Started
Excel Overview
Excel Syntax

Excel Ranges
Excel Fill

Excel Move Cells
Excel Add Cells
Excel Delete Cells

Excel Undo Redo

Al

O 00 N Oyl AW N

[
o

b

309!

320
318
314

Jx

309

35
45
44

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

